Stability of the Ricci Yang-mills Flow at Einstein Yang-mills Metrics

نویسنده

  • ANDREA YOUNG
چکیده

Let P be a principal U(1)-bundle over a closed manifold M . On P , one can define a modified version of the Ricci flow called the Ricci Yang-Mills flow, due to these equations being a coupling of Ricci flow and the Yang-Mills heat flow. We use maximal regularity theory and ideas of Simonett concerning the asymptotic behavior of abstract quasilinear parabolic partial differential equations to study the stability of the volume-normalized Ricci Yang-Mills flow at Einstein Yang-Mills metrics in dimension two. In certain cases, we show the presence of a center manifold of fixed points, while in others, we show the existence of an asymptotically stable fixed point. By writing the Ricci flow equations for a metric on a U(1)-bundle in the KaluzaKlein ansatz with fixed fiber size, one obtains a coupled system of equations–an equation that resembles the Ricci flow on the base metric and an equation that resembles the Yang-Mills heat flow on the connection 1-form. We call this coupled system of equations the Ricci Yang-Mills flow. Recall that the Yang-Mills heat flow is well-behaved in low dimensions, while the Ricci flow can become singular even in dimension two. Thus, one hopes to exploit the nice behavior of the Yang-Mills heat flow part of the system to obtain convergence results of the Ricci Yang-Mills flow. In 1982, Richard Hamilton [7] proposed the Ricci flow as a means to study 3manifolds with positive Ricci curvature. Specifically, let (M, g) be an n-dimensional Riemannian manifold with metric g. The Ricci flow equations are defined to be

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci Yang-mills Solitons on Nilpotent Lie Groups

The purpose of this paper is to introduce the Ricci Yang-Mills soliton equations on nilpotent Lie groups. In the 2-step nilpotent setting, we show that these equations are strictly weaker than the Ricci soliton equations. Using techniques from Geometric Invariant Theory, we develop a procedure to build many different kinds of Ricci Yang-Mills solitons. We finish this note by producing examples ...

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

Thermodynamic Geometry and Topological Einstein-Yang-Mills Black Holes

From the perspective of the statistical fluctuation theory, we explore the role of the thermodynamic geometries and vacuum (in)stability properties for the topological Einstein–Yang–Mills black holes. In this paper, from the perspective of the state-space surface and chemical Weinhold surface of higher dimensional gravity, we provide the criteria for the local and global statistical stability o...

متن کامل

Nonminimal Isotropic Cosmological Model with Yang-mills and Higgs Fields

We establish a nonminimal Einstein-Yang-Mills-Higgs model, which contains six coupling parameters. First three parameters relate to the nonminimal coupling of non-Abelian gauge field and gravity field, two parameters describe the so-called derivative nonminimal coupling of scalar multiplet with gravity field, and the sixth parameter introduces the standard coupling of scalar field with Ricci sc...

متن کامل

LsdiffM and the Einstein equations

We give a formulation of the vacuum Einstein equations in terms of a set of volume-preserving vector fields on a four-manifold M. These vectors satisfy a set of equations which are a generalisation of the Yang-Mills equations for a constant connection on flat spacetime. It is known (Mason and Newman 1989) that the equations which describe self-dual Ricci-flat metrics can be derived from the sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008